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Percolation theory illuminates the behavior 
of many kinds of networks, from cell-phone 
connections to disease transmission

By Kelsey Houston-Edwards 

M AT H E M AT I C S 

The Math 
of Making  
Connectıons

Illustration by Kotryna Zukauskaite
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Illustrations by Jen Christiansen

Kelsey Houston-Edwards  is a mathematician and journalist. 
She formerly wrote and hosted the online show  PBS Infi nite Series. 

These apps let a missive hop silently from one 
phone to the next, eventually connecting the sender 
to the receiver—the only users capable of viewing 
the message. The collections of linked phones, 
known as mesh networks or mobile ad hoc net-
works, enable a fl exible and decentralized mode of 
communication. But for any two phones to commu-
nicate, they need to be linked via a chain of other 
phones. How many people scattered throughout 
Hong Kong need to be connected via the same mesh 
network before we can be confi dent that cross town 
communication is possible? 

A branch of mathematics called percolation the-
ory o� ers a surprising answer: just a few people can 
make all the di� erence. As users join a new net -
work, isolated pockets of connected phones slowly 

 WHEN YOU HIT “SEND” ON A 
text message, it is easy to 
imagine that the note will 
travel directly from your 
phone to your friend’s. In 
fact, it typically goes on a 
long journey through a cel-

lular network or the Internet, both of which rely on cen-
tralized infrastructure that can be damaged by natural 
disasters or shut down by repressive governments. For 
fear of state surveillance or interference, tech-savvy pro-
testers in Hong Kong avoided the Internet by using soft-
ware such as FireChat and Bridgefy to send messages 
directly between nearby phones. 

Mesh Network 
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emerge. But full east-to-west or north-to-south 
communication appears all of a sudden as the den-
sity of users passes a critical and sharp threshold.
Scientists describe such a rapid change in a net-
work’s connectivity as a phase transition—the same 
concept used to explain abrupt changes in the state 
of a material such as the melting of ice or the boil-
ing of water. 

Percolation theory examines the consequences 
of randomly creating or removing links in such net-
works, which mathematicians conceive of as a col-
lection of nodes (represented by points) linked by 
“edges” (lines). Each node represents an object such 
as a phone or a person, and the edges represent a 
specifi c relation between two of them. The funda-
mental insight of percolation theory, which dates 
back to the 1950s, is that as the number of links in a 
network gradually increases, a global cluster of con-
nected nodes will suddenly emerge. 

The  question that scientists struggle to answer 
is: When? What is the equivalent, for any given net-
work, of the zero degrees Celsius at which ice melts 
or the 100 degrees C at which water boils? At what 
point does a meme go viral, a product dominate a 
market, an earthquake begin, a network of cell 
phones achieve full connectivity or a disease be-
come a pandemic? Percolation theory provides in-
sight into all these transitions.

Mathematicians typically study idealized net-
works—symmetric in geometry and infi nite in ex-
tent—because they are the ones amenable to theo-
retical calculations. Infi nite networks are generally 
the only ones with truly sharp phase transitions. 
Real-world networks are limited in extent, are often 
messy and require challenging calculations—but 
they, too, have transitions, albeit more rounded 
ones. As the world becomes increasingly connected 
through complex layers of links that transport peo-
ple, provide them with energy by means of electri-
cal grids or connect them via social media—and 
sometimes spread disease among them—percola-
tion theory becomes ever more pertinent. 

SNAPPING INTO PLACE
IN 1957 BRITISH MATHEMATICIANS  Simon Ralph Broad-
bent and John Michael Hammersley fi rst framed 
percolation theory as a purely mathematical prob-
lem. They abstracted the study of percolation in 
chemistry, which describes a fl uid fi ltering through 
a material, such as oil seeping through porous rock 
or water fi ltering through ground co� ee. The perco-
lation network of a rock layer consists of little holes 
in its structure, represented as nodes, along with the 
channels or cracks that allow fl uid to fl ow between 
them, represented as edges. Unsurprisingly, oil fl ows 
farther through rock that is more fractured. Using 
percolation theory, Broadbent and Hammersley pre-
dicted that in an idealized rock, the oil will switch 
from fl owing through only small regions to suddenly 

permeating almost the entire rock when the density 
of cracks passes a certain threshold.  

Geologists use a version of percolation theory to 
study the sizes of clusters in fractured rock, which 
is relevant to the extraction of oil by fracking and 
to the occurrence of earthquakes. To model earth-
quakes, seismologists create percolation networks 
that match the scale and density of observed cracks, 
and then they account for stresses by adjusting the 
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probability of cracks connecting up. As stresses and 
links increase, clusters expand until, suddenly and 
unpredictably, a quake breaks out. Modifi ed ver-
sions of the percolation process allow cracks to 
heal and refracture to simulate aftershocks or long-
term change.

Percolation theory also illuminates physical and 
chemical processes on a much smaller scale, such as 
polymerization, the process by which small, simple 
molecules called monomers bind together to form 
larger clusters called polymers. In 
the percolation-theory framework, 
each monomer acts as a node, and 
two neighbors may spontaneously 
form a bond, or edge. If the likeli-
hood of their joining increases, the 
system will eventually hit the per-
colation threshold, and one giant, 
connected polymer will emerge. 
This process is what causes pow-
dered gelatin dissolved in water to 
set and form Jell-O. 

The networks in fractured rock 
or linked polymers are extremely 
intricate. It would be nearly impos-
sible to describe their structure 
precisely, but Broadbent and Ham-
mersley showed that they can be 
approximated by repeating pat-
terns that are amenable to analysis. 
The simplest example is a square 
lattice, which looks like an endless 
sheet of graph paper: the nodes are 
arranged in a grid and are connect-
ed by four edges to their neighbors. 

To see how a fl uid might travel 
through this lattice, imagine that 
each tiny edge on the graph paper 
is a pipe that is either open or 
closed. We can determine the state 
of each pipe by tossing a coin la-
beled “open” on one side and 
“closed” on the other. The resulting 
landscape of open and closed pipes 
will be a random network, and it 
will have some “open” clusters in 
which all the nodes are connected 
by a series of open pipes. If you 
poured water into any node in such 
a cluster, it would fl ow through the 
open pipes to reach all the other 
nodes in that cluster. 

Percolation theory is concerned 
with the connectivity of the net-
work, which corresponds to how 
large the open clusters are. But 
“large” is an ambiguous concept 
that does not easily lend itself to 
the formalities of mathematics. So 

mathematicians often substitute large numbers 
with infi nity. The central question then becomes: Is 
there an infi nite cluster? “For us, it’s much easier 
to answer this yes-or-no question than to answer 
how many big clusters do we see of this or this size,” 
says Benedikt Jahnel, a mathematician at the Wei-
erstrass Institute for Applied Analysis and Stochas-
tics in Berlin. 

In fact, the likelihood of an infi nite network hav-
ing an infi nite cluster is always either 0 or 100 per-

cent. That is because the process of 
percolation is subject to a general 
principle in probability theory 
called the zero-one law, discovered 
by Russian mathematician Andrey 
Kolmogorov in the 1930s. Suppose 
you fl ip a coin an infi nite number 
of times. The zero-one law pertains 
to any questions about the outcome 
for which the answer does not de-
pend on any fi nite number of fl ips. 
(For example, the answer to the 
question, “Did you land on heads 
infi nitely many times?” will not 
change if you alter a fi nite number 
of coin fl ips, but the answer to the 
question, “Did you land on heads 
on the third toss?” can be changed 
by altering just one coin fl ip.) 

The zero-one law tells us that fi -
nite changes cannot disturb phe-
nomena that are infi nite in nature. 
So the probability of fi nding an in-
fi nite cluster in an infi nite network 
cannot change slightly, such as 
from 0.81 to 0.82; it must take one 
of the extreme positions—zero or 
one. To put it another way, an infi -
nite network will either have no in-
fi nite cluster (a probability of zero 
for fi nding an infi nite cluster) or 
have an infi nite cluster (a probabil-
ity of one). 

Thus, switching a fi nite number 
of open pipes to closed pipes, or 
vice versa, does not have any e� ect 
on whether an infi nite open cluster 
exists. The probability of fi nding 
an infi nite cluster is either zero or 
one. Which is it? 

FINDING THE THRESHOLD 
THE ANSWER DEPENDS  on the bias of 
your coin. Imagine you have a dial 
that controls the bias. When the 
dial is turned all the way to the left, 
the coin will always land on 
“closed.” Once all the pipes are 
closed, water poured into a node 

Square Lattice 

If probability is set at 1⁄3, each edge (pipe) has a 1 in 3 chance 
of being open. In this 9 × 9 example, when water (blue) is poured 
into the center node, it gets stuck after traveling to 6 other nodes. 

If probability is set at 3⁄4, each edge (pipe) has a 3 in 4 chance 
of being open. In this 9 × 9 example, when water is poured into 
the center node, it travels all the way to the outside border. 

Closed pipe (black)
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will not flow anywhere, and the 
probability of finding an infinite 
cluster will be zero. As you turn the 
dial clockwise, the probability that 
the coin will land on “open” in-
creases, and with additional flips 
there will be more and more open 
pipes. When the dial is turned all 
the way to the right, the coin will 
always land on “open,” and eventu-
ally the water poured into one node 
will f low everywhere else. The 
probability of finding an infinite 
cluster is then one.

If you slowly turn the dial clock-
wise, the likelihood of pipes being 
open gradually increases, and it 
might seem like the chance of find-
ing an infinite cluster should also 
increase gradually from zero to 
one. In fact, the change happens 
instantly because of the zero-one 
law: it states that the likelihood 
cannot be somewhere between 
zero and one. For the square lattice, 
the probability snaps from zero to 
one when the dial is exactly in the 
middle—when the coin has no bias. 
This critical position of the dial is 
known as the percolation thresh-
old. No matter what the shape of 
the network—whether, for example, 
it is a triangular lattice or a three-
dimensional version of the square 
lattice—the essential question of 
percolation theory remains the 
same: Where is the threshold? How 
biased does the coin need to be before enough links 
are open to guarantee an infinite open cluster? 

The answer depends on the exact shape of the 
(infinite) network and is far from easy to find. Even 
proving that the threshold for a square lattice—the 
simplest system—is one half was a daunting chal-
lenge, finally solved by mathematician Harry Kes-
ten in 1980. And despite decades of effort, the exact 
percolation thresholds are known only for a few ex-
ceedingly simple networks. “There’s a whole bunch 
of work done on just finding what the threshold is,” 
says Robert M. Ziff, a statistical physicist at the Uni-
versity of Michigan. “It’s mind-boggling how many 
different systems people have looked at.” Ziff put  
together a Wikipedia page documenting the perco-
lation thresholds for hundreds of different net-
works. The bias for the triangular lattice is roughly 
0.347, a number determined analytically, but the 
vast majority of the numbers on that page (includ-
ing the threshold bias of a three-dimensional 
square lattice) are approximations derived through 
computer simulations. 

MESH NETWORKS 
Lattices are good modeLs  for per-
colation in physical systems such as 
fractured rock, where the holes are 
in fixed locations and the cracks be-
tween them form randomly. But 
other real-world networks are far 
more complicated. In the FireChat 
and Bridgefy mesh networks men-
tioned earlier, for example, the loca-
tions of the nodes—the phones car-
ried by the Hong Kong protesters—
changed constantly. The edges in 
such a network, or connections, 
form when two phones are near 
enough to each other—within the 
tens-of-meters range of the Blue-
tooth-based apps used to share 
messages. Such networks are de-
scribed by a different model, called 
continuum percolation, because 
the nodes of the mesh network can 
be anywhere in a continuous space. 

Like any mathematical model, 
the abstract version of this network 
is based on simplified assumptions. 
The smartphones are randomly 
scattered, without any mimicking 
of the natural clusters and patterns 
in a map of people’s meanderings, 
and two smartphones are linked 
based only on their distance from 
each other, without any consider-
ation of walls or other interference. 
The model nonetheless highlights 
the central role that percolation 
theory plays in real mesh networks. 

There are two ways to increase the connectivity 
of this continuum percolation network: enable di-
rect connection at a longer range or add more smart-
phones, increasing the density of users. These modi-
fications can be thought of as dials like those de-
scribed for the pipe network; turning either one 
clockwise will increase connectivity. And in these 
models, “there’s a switch where you really go from 
local to global connectivity,” Jahnel says. 

For designers of mesh-networking apps, finding 
the percolation threshold is a practical engineering 
problem. Changing the device’s power, which con-
trols the range, is one way to turn a dial. The central 
question, says Ram Ramanathan, chief scientist for 
the mesh-networking company goTenna, is, “What 
do you want the transmit power to be to have a con-
nected network?” The answer would be fairly sim-
ple if power and connectivity had a linear relation—
if each small increase in power led to a proportional 
small increase in connectivity. But the existence of 
a percolation threshold means there is a risk that 
the network will suddenly lose connectivity as peo-

Triangular Lattice 

Three-Dimensional Square Lattice
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ple move around. The optimal power is one that en-
sures the network is always connected but does not 
waste energy. 

The other dial is the density of phones. Mesh 
networks with a fixed range need a critical density 
of users and are most likely to provide widespread 
connectivity at crowded events such as a music fes-
tival, a soccer game or a large protest. Jorge Rios, 
Bridgefy’s CEO and co-founder, says that the com-
pany saw large spikes of new users in Kashmir, Ni-
geria, Hong Kong and Iran during periods of civil 
unrest, when people turned to mesh networks to 
maintain communications in case the government 
shut down the Internet or large crowds jammed cel-
lular connections. Some neighborhoods, such as 
Red Hook in Brooklyn, N.Y., are using mesh net-
works to expand Internet access by fixing perma-
nent nodes to the tops of buildings. Much of the 
necessary hardware and routing technology is still 
evolving, but it is easy to imagine bold, futuristic 
applications—autonomous vehicles could commu-
nicate directly, for example, sharing information 
about traffic patterns or road hazards without rely-
ing on any extra infrastructure. 

DISEASE CONTACT NETWORKS 
The neTworks used To model  the flow of oil through 
rocks or direct communication between phones 
mimic the real spatial structure of these systems: 
two nodes are connected by an edge if the objects 
they represent are close to each other in physical 
space. But for networks that track the spread of dis-
ease from person to person, the links are deter-
mined by the ways in which that specific germ is 
transmitted among them. Such networks are par-
ticularly tangled: one infected person spending an 
hour in a nightclub in a big city may pass a virus to 
a person who carries it across the country or even 
across continents in the following days. 

The simplest epidemiological models lump ev-
eryone into three buckets—susceptible, infected 
and recovered—and neglect this complex structure 
of connections. In such models, infected people 
pass the disease to random others in the suscepti-
ble bucket under the assumption that everyone in 
that group—students in a dorm or residents in a 
city—is equally likely to get it. The rate at which 
susceptible people get infected depends on the ba-
sic reproductive number, the average number of 
new infections caused by a single infected person, 
abbreviated as R0. If R0 is greater than one, then 
the virus is spreading, and if it is less than one, then 
the outbreak is dying out. 

In practice, however, how people interact with 
one another influences the overall spread of the dis-
ease. For example, a 2003 outbreak of severe acute 
respiratory syndrome, or SARS, initially had R0 val-
ues between 2.2 and 3.6, but case counts were 
“much lower than expected during this period, as 

suggested by a simple calculation,” wrote Lauren 
Ancel Meyers, now director of the University of Tex-
as  COVID-19 Modeling Consortium, in a 2006 arti-
cle. The discrepancy, she argued, followed from the 
assumption that “all susceptible individuals are 
equally likely to become infected,” which ignores 
the complex shape of people’s contact networks. In 
particular, the estimated R0 values for SARS were 
based on its rapid spread within apartment build-
ings and hospitals, which have “anomalously high 
rates of close contacts among individuals” com-
pared with the general population. But because 
people infected with SARS became very sick rather 
quickly, they ended up in hospitals before they 
could infect many people outside of them. 

The edges in a disease network express specific 
relations. In one showing the potential spread of 
HIV, for example, two people are connected by an 
edge if they have exchanged bodily fluids. A net-
work showing the potential spread of  COVID-19 has 
a very different structure of edges, representing 
close contact without respiratory protection. Lock-
downs or restrictions such as closing businesses 
and limiting travel alter this edge structure and, 
along with masks and physical distancing, prevent 
the virus from leaping from one person, or node, to 
another. One challenge for epidemiologists is to 
find ways to sufficiently disconnect the network. 

Real-world disease contact networks such as 
those that show the spread of  COVID-19 are ex-
tremely complicated and difficult to describe pre-
cisely. Even if the exact structure of the network 
were known, it would be challenging to analyze 
mathematically. Computer simulations and mas-
sive data analysis are used to predict future case 
numbers, evaluate the impact of one meter versus 
two meters of social distancing, and quantify the 
significance of schools and restaurants in the 
spread of the coronavirus. Alessandro Vespignani, 
a complex-network theorist at Northeastern Uni-
versity, refers to this research as his “wartime” 
work—tactical and occasionally messy but produc-
ing the immediate, numerical results that policy 
makers and health-care workers need. Vespignani 
and his colleagues create “a kind of synthetic soci-
ety where all these individuals are packaged into a 
computer” to run simulations, he says. 

In contrast, Vespignani refers to his “peacetime” 
research as the period when “you develop the mod-
el, you calibrate different ways of modeling things, 
you develop specific approaches, you look up how 
you can improve on your results.” To obtain a theo-
retical understanding of how the basic shape and 
structural features of a network impact the spread 
of a disease, scientists turn to percolation theory. 

The tools offered by the traditional pen-and- 
paper mathematics of percolation work only in the 
simplest cases, where the network is artificially or-
dered and symmetrical. Even so, “the mathematics 
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is crucial to guide your understanding,” Vespignani 
says. Network epidemiologists strip the network 
down to its essentials, in particular, its so-called 
degree distribution. A degree is the number of other 
nodes that a specific node is connected to. In the 
square lattice, for example, all nodes have degree 
four. In a disease network, however, the degree var-
ies dramatically: some individuals have many con-
tacts and may potentially spread the disease to 
many people, whereas others are fairly isolated. 

The degree distribution describes how likely a 
node is to have each degree. In disease contact net-
works, this translates to how likely someone is to 
infect (or potentially be infected by) a certain num-
ber of other people. To understand how this aspect 
affects the percolation threshold, mathematical ep-
idemiologists such as Meyers generate thousands of 
sample networks that are essentially random ex-
cept for one feature: they all have the same degree 
distribution. This approach is a way of isolating the 
degree distribution to perceive its role in the net-
work’s structure. If the properties of the gen-
erated networks match up with the real-
world networks, then the degree distribution 
or any other features that are “baked into the 
math” are likely to be relevant to the spread of 
the disease, Meyers says. If the match is per-
fect, “then your mathematical results would 
look just like your simulations.” 

Research shows that the percolation thresh-
old for a network drops if the network has a 
broader degree distribution, meaning a wider 
range in the degrees of the nodes. So a disease 
will spread more easily in a network with some high-
ly connected people and some isolated individuals 
than in a network where everyone has roughly the 
same number of contacts. Joel Miller, a mathemati-
cal epidemiologist at La Trobe University in Mel-
bourne, Australia, explains the observation heuris-
tically: “If I have 10 times as many contacts as you, 
I’m 10 times as likely to get infected, and I’m 10 
times as likely to spread as you, so that’s 100 times 
more important for disease spread.” 

NETWORKS OF THE FUTURE 
Percolation theory  is used to model other “conta-
gion” phenomena, such as when a meme on a social 
media network slowly gains traction before sudden-
ly going viral. It can be applied to economic models 
to show how a particular product can quickly come 
to dominate a market as people share recommenda-
tions among their social contacts. Voter models, 
where people influence their community, also show 
threshold effects. 

In contrast to the infinite, neatly ordered net-
works that mathematicians have traditionally stud-
ied, networks derived from real examples are finite 
in extent and messy. Finite networks do not instant-
ly jump from being connected within small pockets 

to being connected almost everywhere the way infi-
nite networks do, but they do usually make the 
switch very quickly. To understand these processes, 
network theorists go back and forth between the 
mathematics and the computer simulations. The 
simpler networks guide them in building detailed 
computer models of actual networks, lessons from 
which in turn influence how they modify the pen-
and-paper models to gain insight into the real world. 

Many important network models of the spread 
of  COVID-19 integrate information from other net-
works. School systems, train routes and hospital-
employee schedules all form networks—and each of 
them influences the course of the pandemic. “We 
live in this system of interdependent networks, and 
we can’t just think about one without understand-
ing the consequences that the others bring,” says 
Raissa D’Souza, a complex-network theorist at the 
University of California, Davis. Each network is its 
own complex system with its own emergent behav-
ior. Increasingly, we are coupling these networks to 

create an even more complex system. But there is 
no clear theoretical framework to study such net-
works of networks. Understanding how their prop-
erties are affected by the properties of the constitu-
ent networks is a challenge for the future. 

“We are not living in a bubble or a fully mixed 
world. We live in a world with contacts, we follow 
Twitter accounts, and these are places where perco-
lation and other models enter,” Vespignani says. 
Gaining a better understanding of those theoretical 
mathematical models now “can make the difference 
in the future.” Percolation networks are easily ad -
apt able, yielding new playgrounds for mathemati-
cians and practical applications for scientists, but 
these diverse models are unified by one surprising 
feature: they all have a sharp pivot point where just 
a few new connections tie the network together. As 
the world becomes ever more connected, the neces-
sity of understanding these crucial transitions be-
comes ever more urgent. 

F R O M O U R A R C H I V E S 

Numbers Game.  Kelsey Houston-Edwards; September 2019. 
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Simplified networks provide insight for 
building detailed computer simulations 
of actual networks, lessons from 
which in turn influence how scientists 
modify the pen-and-paper models.
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